

EHEDG Certified:

PRTXS 3-A Authorized

Sanitary PRTXS Models Only

Equipment

omega.com

e-mail: info@omega.com For latest product manuals: www.omega.com/enus/pdf-manuals

PRTXS model

PRTXI model

PRTXI and PRTXS Series

RTD Temperature Transmitter with IO-Link/Switch and 4 to 20 mA

omega.com info@omega.com

Omega Engineering, Inc:

800 Connecticut Ave. Suite 5N01, Norwalk, CT 06854, USA Toll-Free: 1-800-826-6342 (USA & Canada only) Customer Service: 1-800-622-2378 (USA & Canada only) Engineering Service: 1-800-872-9436 (USA & Canada only)

Tel: (203) 359-1660 e-mail: info@omega.com

Fax: (203) 359-7700

Omega Engineering, Limited:

1 Omega Drive, Northbank, Irlam Manchester M44 5BD United Kingdom

Omega Engineering, GmbH:

Daimlerstrasse 26 75392 Deckenpfronn Germany

The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains and reserves the right to alter specifications without notice.

Table of Contents

1 Notes, Cautions, and Warnings 4 1.1 Requirements for Personnel 4 1.2 Designated Use 4 1.3 Operational Safety 4 1.4 Product Safety 4 2 Specifications 5 3 PRTX Hardware Overview 5 3.1 Installation Instructions 11 3.1.1 Orientation 11 3.1.2 Device Temperature Ranges 11 3.1.3 Cylindrical Threads 11 3.1.4 Tapered Threads 12 4.1 IO-Link Operating Mode 12 4.2 4 to 20 mA Operating Mode 12 4.3 1.4 to 20 mA Operating Mode 12 5.1 Device and Vendor Identification 15 5.2 Process Data 12 5.3 Reading and Writing Device Data 12 5.3.1 Specific Device Data 12 5.3.2 IO-Link Specific Device Data 12 5.3.3 System Commands 15 6 Diagnostic Information via Communication	Та	able of	f Contents	3
3 PRTX Hardware Overview 5 3.1 Installation Instructions 10 3.1.1 Orientation 11 3.1.2 Device Temperature Ranges 11 3.1.3 Cylindrical Threads 11 3.1.4 Tapered Threads 12 4 Electrical Connection 13 4.1 IO-Link Operating Mode 13 4.2 4 to 20 mA Operating Mode 14 5 System Integration 15 5.1 Device and Vendor Identification 15 5.2 Process Data 15 5.3 Reading and Writing Device Data 16 5.3.1 Specific Device Data 16 5.3.2 IO-Link Specific Device Data 16 5.3.3 System Commands 12 6 Diagnostic Information via Communication Interface 20 6.1 Diagnostic Overview 21 6.2.1 Device Behavior During an Event Fault 22 6.3 Diagnostic List 23 6.4 Event Logbook 23 7.1 Se	1	1.1 1.2 1.3 1.4	Requirements for Personnel Designated Use Operational Safety Product Safety	4 4 4 4
3.1 Installation Instructions 10 3.1.1 Orientation 11 3.1.2 Device Temperature Ranges 11 3.1.3 Cylindrical Threads 11 3.1.4 Tapered Threads 12 4 Electrical Connection 12 4.1 IO-Link Operating Mode 12 4.2 4 to 20 mA Operating Mode 14 5 System Integration 15 5.1 Device Data 15 5.2 Process Data 12 5.3 Reading and Writing Device Data 16 5.3.1 Specific Device Data 16 5.3.2 IO-Link Specific Device Data 16 5.3.3 System Commands 16 6 Diagnostic Information via Communication Interface 20 6.1 Diagnostic Overview 21 6.2.1 Device Behavior During an Event Fault 22 6.3 Diagnostic Ust 23 6.4 Event Logbook 23 7.1 Services 23	2	Spe	cifications	5
4.1 IO-Link Operating Mode 13 4.2 4 to 20 mA Operating Mode 14 5 System Integration 15 5.1 Device and Vendor Identification 15 5.2 Process Data 15 5.3 Reading and Writing Device Data 16 5.3.1 Specific Device Data 16 5.3.2 IO-Link Specific Device Data 16 5.3.3 System Commands 19 6 Diagnostics and Troubleshooting 20 6.1 Diagnostic Information via Communication Interface 20 6.2.1 Device Behavior During an Event Fault 22 6.3 Diagnostic List 22 6.4 Event Logbook 23 7 Maintenance and Cleaning 23 7.1 Services 23	3	3.1 3.1.2 3.1.2 3.1.3	Installation Instructions 1 Orientation 2 Device Temperature Ranges 3 Cylindrical Threads	10 11 11
5.1 Device and Vendor Identification 15 5.2 Process Data 15 5.3 Reading and Writing Device Data 16 5.3.1 Specific Device Data 16 5.3.2 IO-Link Specific Device Data 16 5.3.3 System Commands 15 6 Diagnostics and Troubleshooting 20 6.1 Diagnostic Information via Communication Interface 20 6.2 Diagnostic Overview 21 6.2.1 Device Behavior During an Event Fault 22 6.3 Diagnostic List 23 6.4 Event Logbook 23 7 Maintenance and Cleaning 23 7.1 Services 23	-	4.1 4.2	IO-Link Operating Mode 4 to 20 mA Operating Mode	13 14
6.1 Diagnostic Information via Communication Interface 20 6.2 Diagnostic Overview 21 6.2.1 Device Behavior During an Event Fault 22 6.3 Diagnostic List 23 6.4 Event Logbook 23 7 Maintenance and Cleaning 23 7.1 Services 23		5.1 5.2 5.3 5.3.2	Device and Vendor Identification Process Data Reading and Writing Device Data 1 Specific Device Data 2 IO-Link Specific Device Data	15 15 16 16
7.1 Services	6	6.1 6.2 6.2.2	Diagnostic Information via Communication Interface Diagnostic Overview 1 Device Behavior During an Event Fault Diagnostic List	20 21 22 23
	7 8	7.1	Services	23

1 Notes, Cautions, and Warnings

If the equipment is used in a manner not specified in this manual, protection of the equipment may be impaired.

Do not operate the equipment in flammable or explosive environments.

It is important to read and follow all precautions and instructions in this manual before operating or commissioning this device as it contains important information relating to safety and EMC. Failure to follow all the safety precautions may result in injury and/or damage to the equipment.

The following labels identify information that is especially important to note:

Note Solution Note: Provides information that is important to successfully set up and use the PRTXI/PRTXS.

Caution or Warning: Informs about the risk of electrical shock.

Caution, Warning, or Important: Informs of circumstances that can affect the functionality of the instruments and must refer to accompanying documents.

1.1 Requirements for Personnel

Installation, commissioning, diagnostics, and maintenance must abide by the following requirements:

- Trained, qualified specialists must have relevant qualifications.
- Personnel must be authorized by the plant owner/operator.
- Personnel must be familiar with federal/national regulations.
- Before starting work, read and understand the instructions in the manual.
- Follow instructions and comply with basic conditions.

1.2 Designated Use

The device is a compact RTD temperature sensor for industrial temperature measurement. The manufacturer is not liable for damage caused by improper or non-designated use.

1.3 Operational Safety

Modifications to the device: Unauthorized modifications to the device are not permitted and can lead to dangers to personnel and/or the device.

Caution: Risk of injury!

• Operate the device only if it is in proper technical condition, free from errors and faults.

1.4 Product Safety

This measuring device is designed in accordance with safety requirements, has been tested, and shipped in a condition in which it is safe to operate. It meets general safety standards and legal requirements. It also complies with the EC directives listed in the EC Declaration of Conformity. The manufacturer confirms this by affixing the CE mark to the device.

E OMEGA

2 **Specifications**

Measurement Range: -50 to 200°C (-58 to 392°F) **Output Signal** 4 to 20 mA (Analog): 4 to 20 mA; measuring range -50 to 200°C (-58 to 392°F) **IO-Link (Digital):** C/Q (IO-Link or switch output)

Note: For additional information regarding the IO-Link and 4 to 20 mA wiring, refer to Section 4 Electrical Connection.

Failure Information

Failure information is generated if the measuring information is missing or not valid. The device displays the three diagnostic messages with the highest priority.

In the IO-Link mode, the device transmits all failure information digitally.

In the 4 to 20 mA mode, the device transmits the failure information according to NAMUR NE43:

Fault	Description
Underranging	Linear drop from 4.0 to 3.8 mA.
Overranging	Linear increase from 20.0 to 20.5 mA.
Failure (Sensor Defective)	\leq 3.6 mA (low) or \geq 21 mA (high) can be selected. The high alarm setting can be set between 21.5 mA and 23 mA; providing the flexibility needed to meet the requirements of various control systems.

Linearization/Transmission Behavior: Temperature – linear

Power Supply

Supply Voltage (IO-Link/4 to 20 mA): U_b = 10 to 30 V DC, protected against reverse polarity. IO-Link communication is guaranteed only if the supply voltage is at least 15 V. If the supply voltage is less than 15 V, the device displays a diagnostic message and deactivates the switch output.

Power Supply Failure: To meet electrical safety according to CAN/CSA-C22.2 No. 61010-1 or UL 61010-1, the device may only be powered by a power supply unit with a limited energy electric circuit in accordance with UL/EN/IEC 61010-1 chapter 9.4 or Class 2 according to UL 1310, "SELV or Class 2 circuit".

> Behavior in the event of overvoltage (> 30 V): The device works continuously up to 35 V DC without any damage. If the supply voltage is exceeded, the provided specifications can no longer be guaranteed.

Behavior in the event of undervoltage:

If the supply voltage falls below the minimum value ~ 7 V, the device will switch off as if not supplied with power.

Maximum Current Consumption: ≤ 23 mA for 4 to 20 mA Power-On Delay: 2 seconds

Overvoltage Protection: To protect against overvoltage in the power supply and signal/communication cables for the RTD temperature sensor electronics, the use of a suitable surge arrester is recommended.

Reference Operating Conditions

Adjustment Temperature (Ice Bath): $0^{\circ}C (32^{\circ}F)$ for sensor Ambient Temperature: $(25^{\circ}C \pm 3^{\circ}C (77^{\circ}F \pm 5^{\circ}F)$ for electronics Supply Voltage: $24 \vee DC \pm 10\%$ Relative Humidity: <95%

Maximum Measured Error: When in accordance with the reference operating conditions listed above, the measured error data corresponds to $\pm 2 \sigma$ (Gaussian distribution). The data include non-linearities and repeatability.

Measured error (according to IEC 60751) in $^{\circ}C = 0.15 + 0.002 |T|$

Note: |T| = Numerical value of the temperature in °C without regard to algebraic sign.

RTD Temperature Sensor with Electronics

Standard	Designation	Measuring Dense	Measured Error (±)			
Standard	Designation	Measuring Range		Digital ¹⁾	D/A ²⁾	
			Maximum	Based on measured value		
IEC 60751	Pt100 Cl. A	–50 to +200 °C (–58 to +392 °F)	≤0.55 °C	ME = ± (0.215 °C (0.387 °F) +	0.05 % (8 μA)	
IEC 00731	P1100 CI. A	P(100 Cl. A -30 t0 +200 C (-38 t0 +392 F) (0.		0.134% * (MV - LRV))	0.05 % (δ μΑ)	

1) Measured Value transmitted via IO-Link.

2) Percentages based on the configured span of the analog output signal.

MV = Measured value

LRV = Lower range value of relevant sensor

Total measured error of transmitter at current output = $\sqrt{(Measured error digital^2 + Measured error D/A^2)}$

Operating Influences: The measured error data corresponds to $\pm 2 \rho \sigma$ (Gaussian distribution).

Stand	dard	Designation	Ambient Temperature Influence (+-) per 1 °(°F) Change			Supply Volta	ge Influence (+-) pe	r 1 V Change
			Digital 1)		D/A ²⁾	Digital ¹⁾		D/A ²⁾
			Maximum ³⁾	Based on measured value ⁴⁾		Maximum ³⁾	Based on measured value 4)	
IEC 60	0751	Pt100 Cl. A	0.010 °C (0.018 °F)	0.004 % * (MV - LRV), min. 0.008 °C (0.0144 °F)	μ Λ)	0.010 °C (0.018 °F)	0.004 % * (MV - LRV), min. 0.008 °C (0.0144 °F)	0.003 % (0.48 μA)

1) Measured value transmitted via IO-Link.

2) Percentages based on the configured span of the analog output signal.

3) Maximum measured error for the specified measuring range.

4) Deviations from maximum measured error possible due to rounding.

MV = Measured valueLRV = Lower range value of relevant sensor Total measured error of transmitter at current output = V(Measured error digital² + Measured error D/A²)

The following is a table of sample calculations with Pt100, measuring range -50 to +200 °C (-58 to +392°F), ambient temperature +35 °C (+95 °F), and supply voltage 30 V:

	Sample Calculations	
Measured Error Digital	0.215 °C (0.387 °F) + 0.134% x [200 °C (392 °F) - (–50 °C (–58 °F))]	0.55 °C (0.99 °F)
Measured Error D/A	0.05 % x 200 °C (392 °F)	0.10 °C (0.18 °F)
Influence of Ambient Temperature (Digital)	(35 - 25) x (0.004 % x 200 °C (392 °F)), min. 0.008 °C (0.014 °F)	0.08 °C (0.14 °F)
Influence of Ambient Temperature (D/A)	(35 - 25) x (0.003 % x 200 °C (392 °F))	0.06 °C (0.11 °F)
Influence of Supply Voltage (Digital)	(30 - 24) x (0.004 % x 200 °C (392 °F)), min. 0.008 °C (0.014 °F)	0.05 °C (0.09 °F)
Influence of Supply Voltage (D/A)	(30 - 24) x (0.003 % x 200°C (392°F))	0.04 °C (0.07 °F)
Measured Error Digital Value (IO-Link)	V(Measured error digital ² + Influence of ambient temperature (digital) ² + Influence of supply voltage (digital) ²	0.56 °C (1.01 °F)
Measured Error Analog Value (Current Output)	$(Measured error digital^2 + Measured error D/A^2 + Influence of ambient temperature (digital)^2 + Influence of ambient temperature (D/A)^2 + Influence of supply voltage (digital)^2 + Influence of supply voltage (D/A)^2$	0.57 °C (1.03 °F)

Long-Term Drift:

	1 Month	3 Months	6 Months	1 Year	3 Years	5 Years
Digital output IO-Link	± 9 mK	± 15 mK	± 19 mK	± 23 mK	± 28 mK	± 31 mK
Current output 4-20 mA	± 2.5 μΑ	± 4.3 μA	± 5.4 μA	± 6.4 μA	± 8.0 μΑ	± 8.8 μΑ

Response Time T₉₀: Test in water at 0.4 m/s (1.3 ft/s) according to IEC 60751; temperature changes in increments of 10 K.

Design	t ₉₀
1/8" diameter probe	2 s
3/16" diameter probe	2 s
1/4" diameter probe	4 s

Environment

Ambient Temperature Range: -40 to 85°C (-40 to 185°F) Storage Temperature: -40 to 85°C (-40 to 185°F) Operating Altitude: Up to 2000 m (6600 ft) above sea level Climate Class: As per IEC/EN 60654-1, Class Dx Degree of Protection: As per IEC/EN 60529 IP69 Shock and Vibration Resistance: The RTD temperature sensor meets the requirements of IEC 60751, which specifies shock and vibration resistance of 5 g in the

10 to 2000 Hz range.

Electromagnetic Compatibility (EMC): EMC in accordance with all the relevant requirements of the IEC/EN

61326 series and NAMUR Recommendation EMC (NE21). For details, refer to the Declaration of Conformity.

- Maximum measured error under EMC tests: < 1 % of the span
- Interference immunity according to IEC/EN 61326 series, requirements for industrial fields.
- Interference emission according to IEC/EN 61326 series, Class B equipment

IO-Link

- Only the requirements of IEC/EN 61131-9 are met in IO-Link mode.
- The connection between the IO-Link master and RTD temperature sensor is established using an unshielded 3-wire cable, maximum 20 m (65.6 ft) in length.

4 to 20 mA

- Electromagnetic compatibility in accordance with all the relevant requirements of the IEC/EN 61326 series and NAMUR Recommendation EMC (NE21).
- With a connection cable length of 30 m (98.4 ft): always use a shielded cable.
- The use of twisted pair shielded connection cables is generally recommended.

Electrical Safety: Protection class III, Overvoltage category II, Pollution level 2

3 PRTX Hardware Overview

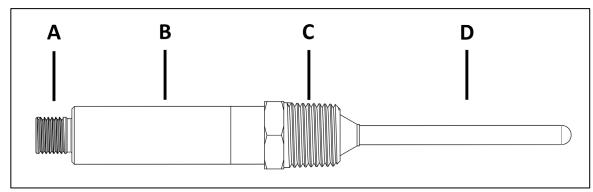


Figure 1: PRTX probe diagram

Кеу	Description	
A M12 threaded connector		
B Transmitter housing		
С	Process connection	
D	Sensor Probe	

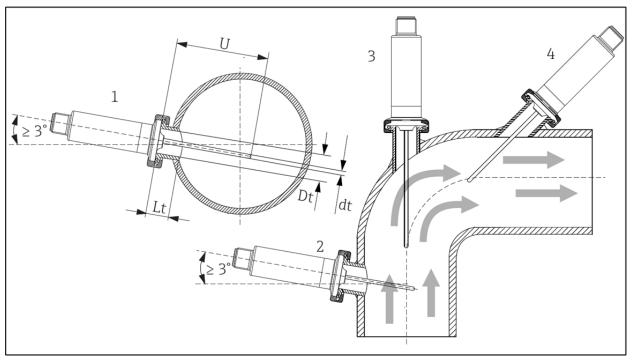


Figure 2: Installation visual diagram guide

Key	Description		
1	Perpendicular to flow direction, installed at a minimum angle of 3° to ensure self-draining		
2	Perpendicular to flow direction, installed at a minimum angle of 3° to ensure self-draining		
3	On elbows		
4	Inclined installation in pipes with a small nominal diameter		
U	Immersion length		

3.1 Installation Instructions

The immersion length of the RTD temperature sensor can considerably influence the accuracy of the device. If the immersion length is too short, measurement errors can occur. When installing the device in a pipe, the immersion length should penetrate halfway into the pipe diameter and ideally also be at least 15 times the diameter of the probe. Installation examples include:

- Pipes
- Tanks
- Other plant components

Proceed as follows to install the device:

- **Step 1:** The permitted tightening torque of the process connections can be found in the specifications.
- **Step 2:** The process connection and compression fitting must comply with the maximum specified process pressure.
- **Step 3:** Make sure that the device is installed and secured before applying the process pressure.

Step 4: Adjust the tightening torque of the thermowell to the process conditions.

Step 5: It may be necessary to calculate the static and dynamic tightening torque.

In the case of pipes with a small nominal diameter, the tip of the RTD temperature sensor should be inserted deep enough into the process so that it extends past the pipe axis; Installation at an angle (4) may be another solution. When determining the immersion length or installation depth, parameters of the RTD temperature sensor and of the medium to be measured, such as flow velocity and process pressure, must be considered.

Note: The requirements of the EHEDG and the 3-A Sanitary Standard must be adhered to.

- Installation instructions EHEDG/cleanability: Lt ≤ (Dt-dt)
- Installation instructions 3-A/cleanability: Lt ≤ 2(Dt-dt)
- EHEDG certified installation requires the use of special gaskets as described in the EHEDG position paper "Easy cleanable pipe couplings and process connections" Version 5, June 2019

The following actions must be taken if a sealing ring (O-ring) or seal fails:

- **Step 1:** The RTD temperature sensor must be removed.
- **Step 2:** The thread and the O-ring joint/sealing surface must be cleaned.
- **Step 3:** The sealing ring or seal must be replaced.

Step 4: Proper cleaning of the device must be performed after installation.

In the case of weld-in connections, exercise the necessary degree of care when performing the welding work on the process side:

- Step 1: Use suitable welding material.
- **Step 2:** Flush-weld or weld with welding radius \geq 3.2 mm (0.13 in).
- **Step 3:** Avoid crevices, folds or gaps.
- **Step 4:** Ensure the surface is honed and polished, $Ra \le 0.76 \mu m$ (30 μin).

The installed sensor is suitable for cleaning in place. Cleaning is performed together with the pipe or tank. In the case of internal tank fixtures using process connection nozzles, it is important to ensure that the cleaning assembly directly sprays this area so that it is cleaned properly.

3.1.1 Orientation

No restrictions. However, the process must be able to self-drain. If there is an opening to detect leaks at the process connection, the opening must be at the lowest possible point.

3.1.2 **Device Temperature Ranges**

The device generates a diagnostic message **S825** if unfavorable device conditions are reached, such as high process temperature, high ambient temperature, or electronics too close to the process. The device generates diagnostic message F001 or Failure Current if the device temperature exceeds the recommended temperature.

Ambient Temperature Range: -40 to 85°C (-40 to 185°F) The RTD temperature sensor electronics must be protected against temperatures over 85°C (185°F)

Process Temperature Range: -50 to 200°C (-58 to 392°F)

3.1.3 **Cylindrical Threads**

Note: Seals must be used for cylindrical G threads.

Process Connection	Tightening Torque [Nm]
G ¼"	61 Nm (45 ft/lbs)
G ³ / ₈ "	75 Nm (55 ft/lbs)
G ½"	81 Nm (60 ft/lbs)

If new sealing washers are required, they can be purchased from Omega Engineering in the following sizes:

Process Connection	Omega Part Number
G ¼"	CSW-1/4
G ³ / ₈ "	CSW-3/8
G ½"	CSW-1/2

3.1.4 Tapered Threads

The operator must verify if additional sealing is necessary in the case of NPT threads or other tapered threads.

Process Connection	Tightening Torque [Nm]
1⁄4″ NPT	Hand-tighten, then, 2-3 full turns
3∕8″ NPT	Hand-tighten, then, 2-3 full turns
½" NPT	Hand-tighten, then, 2-3 full turns

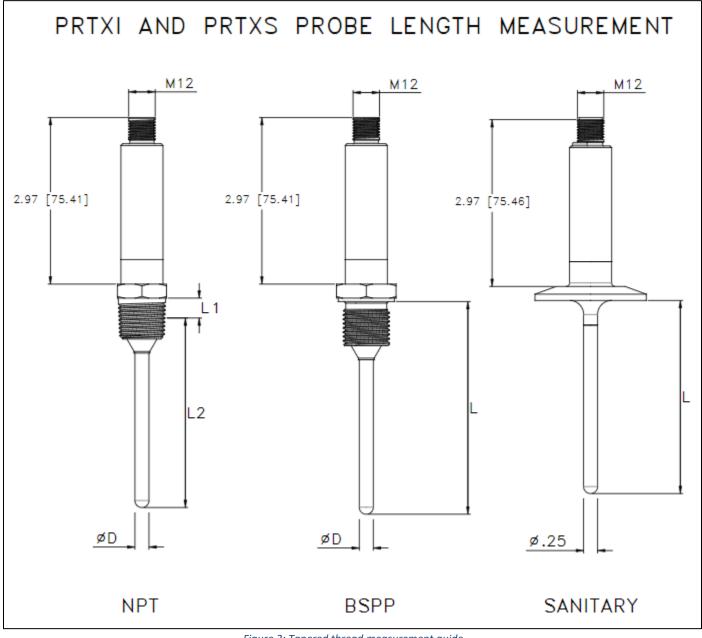
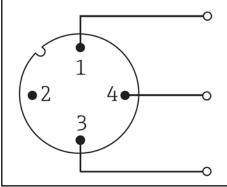


Figure 3: Tapered thread measurement guide


4 Electrical Connection

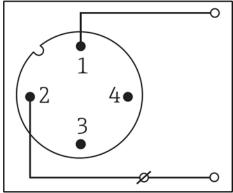
The Omega PRTX offers two operating modes. Refer to the wiring diagrams below outlining the two different options.

 Λ

Important: Do not overtighten the M12 plug, as this may damage the device. The maximum torque of the M12 knurl is **0.4 Nm**. The indicated degree of protection is ensured if the M12x1 cable connector meets the required degree of tightness.

4.1 IO-Link Operating Mode

Pin	Description								
1	+ Power supply 15 to 30 V DC								
2	Not used								
3	- Power supply 0 V DC								
4	C/Q (IO-Link or switch output)								


Figure 3: IO-Link wiring diagram

Switching Capacity

- 1x PNP switch output
- Switch state ON Ia \leq 200 mA; switch state OFF Ia \leq 10 μ A
- Switch cycles > 10,000,000
- Voltage drop PNP $\leq 2 V$
- Overload protection
 - Automatic load testing of switching current
 - If a current of over 220 mA flows in the ON switch state, the device switches to a safe state
 - Diagnostic message **Overload at switch output**
- Switch functions
 - Hysteresis or window function
 - NC contact or NO contact
- No pull-down resistor is integrated in the device for the switch output

4.2 4 to 20 mA Operating Mode

Pin	Description								
1	+ Power supply 10 to 30 V DC								
2	- Power supply 0 V DC								
3	Not used								
4	Not used								

Figure 4: 4 to 20 mA wiring diagram

Load: $R_{b max} = (U_{b max} - 10 V) / 0.023 A$ (current output)

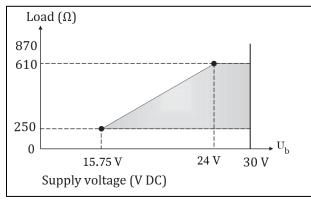


Figure 5: Maximum allowable load resistance

Linearization/Transmission Behavior: Temperature – Linear

Damping:	Configurable Sensor Input Damping	0 to 120 s
	Factory Default Setting	0 s

5 System Integration

5.1 Device and Vendor Identification

Device ID	8585472
Vendor ID	1590

5.2 Process Data

When the PRTX is in **Digital Mode**, the state of the switch output and the temperature value are transmitted in the form of process data via IO-Link. The signal is initially transmitted in the **SIO-Mode** (Standard IO-Mode). Digital IO-Link communication starts as soon as the IO-Link master sends the **Wake-Up** command.

- In SIO mode, the switch output is switched at pin 4 of the M12 connector. In the IO-Link communication mode, this pin is reserved for communication.
- The measuring device's process data are transmitted cyclically in 32-bit batches.

	Byte 1										By	te 2			
31	31 30 29 28 27 26 25 24 23								22	21	20	19	18	17	16
	sint16														
	Temperature (with one decimal place)														

	Byte 3											Byte	4		
15	15 14 13 12 11 10 9 8							7	6	5	4	3	2	1	0
	sint8										Enum4 Bool				
	Scale (1)										Measured value Switch				
	Scale (-1)											sta	tus		state

Process Value	Values	Meaning				
	–32000 to +32000	Temperature value with one decimal place Example: a transmitted value of 123 corresponds to a measured temperature value of 12.3 °C				
Temperature	32764 = No measurement data	Process value if no valid measured value is available				
	- 32760 = Out of range (-)	Process value if the measured value is below the lower limit value				
	32760 = Out of range (+)	Process value if the measured value is above the upper limit value				
Scale	-1	The transmitted measured value must be multiplied by 10 exp (Scale) (times 10 ⁻¹ or 0.1)				

Process value	Values	Meaning				
	0 = Bad	Measured value cannot be used				
		Measured value can only be used to a				
	1 = Uncertain	limited extent, e.g.: device temperature is				
Measured value		outside the permitted range (S825)				
status [bit 4 - 3]		Measured value can only be used to a				
	2 = Manual/Fixed	limited extent, e.g.: simulation of the				
_		measured variable is active (C485)				
	3 = Good	Measured value is good				
	0 = Not limited	Measured value without limit value				
Measured value		violation				
status	1 = Low limited	Limit value violation at lower end				
[bit 2- 1]	2 = High limited	Limit value violation at upper end				
	3 = Constant	Measured value is set to a constant value				
Switch output	0 = Off	Switch output opened				
[bit 0]	1 = On	Switch output closed				

5.3 Reading and Writing Device Data

Device data are always exchanged acyclically and at the request of the IO-Link master via the ISDU communication channel. The IO-Link master can read the following parameter values or device conditions:

5.3.1 Specific Device Data

The default values apply to parameters which are not ordered with customer-specific settings.

Identifier	Index (dec)	Index (hex)	Size (byte)	Data Type	Access	Default Value	Value Range	Data Storage
Application Specific Tag	24	0x0018	32	String	r/w	_	_	Yes
Order Code	1054	0x041E	20	String	r/-	-	-	-
Extended Order Code	259	0x0103	60	String	r/-	-	-	_
Unit	5121	0x1401	1	UInteger8	r/w	32	32 = °C 33 = °F 35 = K	Yes
Damping	7271	0x1C67	1	UInteger8	r/w	0 s	0 to 120 s	Yes
Sensor Offset	3082	0x0C0A	4	Float	r/w	0 °C (32 °F)	-10 to +10 °C (-18 to +18 °F)	Yes
Operating Mode Switch	2050	0x0802	2	UInteger16	r/w	Hysteresis normally open (0x0C9C)	Window normally open (0x0CFF) Window normally closed (0x0C96) Hysteresis normally open (0x0C9C) Hysteresis normally closed (0x0C99) Off (0x80EC)	Yes

Identifier	Index (dec)	Index (hex)	Size (byte)	Data Type	Access	Default Value	Value Range	Data Storage
Switch Point Value	2051	0x0803	4	Float	r/w	100 °C (212 °F)	-1E+20 to 1E+20	Yes
Switchback								
Point Value	2052	0x0804	4	Float	r/w	90 °C (194 °F)	-1E+20 to 1E+20	Yes
Switch Delay	2053	0x0805	1	UInteger8	r/w	0 s	0 to 99 s	Yes
Switchback Delay	2054	0x0806	1	UInteger8	r/w	0 s	0 to 99 s	Yes
4 mA Value	8218	0x201A	4	Float	r/w	-50 °C (-58 °F)	–50000 to +50000 °C	Yes
20 mA Value Current Trimming 4 mA	8219 8213	0x201B 0x2015	4	Float Float	r/w r/w	200 °C (392 °F) 4.00 mA	-50000 to +50000 °C 3.85 to 4.15 mA	Yes Yes
Current Trimming 20 mA	8212	0x2014	4	Float	r/w	20.00 mA	19.85 to 20.15 mA	Yes
Failure Mode	8234	0x202A	1	UInteger8	r/w	0 = Low alarm	0 = Low alarm 2 = High alarm	Yes
Failure Current	8232	0x2028	4	Float	r/w	22.5 mA	21.5 to 23 mA	Yes
Operating Time	6148	0x1804	4	UInteger32	r/-	_	_	Yes
Alarm Delay	6147	0x1803	1	UInteger8	r/w	2 s	1 to 5 s	Yes
Device Status	36	0x0024	1	UInteger8	r/-	_	0: Device is OK 1: Maintenance required 2: Out of specification 3: Functional check 4: Failure	_
Detailed Device Status	37	0x0025	36	OctetString	r/-	_	In accordance with IO-Link specification	_
Actual Diagnostic 1	6184	0x1828	2	UInteger16	r/-	_	-	_
Actual Diagnostic 2	6186	0x182A	2	UInteger16	r/-	_	_	_
Actual Diagnostic 3	6188	0x182C	2	UInteger16	r/-	_	_	_
Previous Diagnostics 1	6214	0x1846	2	UInteger16	r/-	_	_	_
Timestamp 1	6204	0x183C	4	UInteger32	r/-			
Previous Diagnostics 2	6216	0x1848	2	UInteger16	r/-	_	-	_
Timestamp 2	6205	0x183D	4	UInteger32	r/-	_	_	_
Previous Diagnostics 3	6218	0x184A	2	UInteger16	r/-	_	_	_
Timestamp 3	6206	0x183E	4	UInteger32	r/-	_	_	_

Identifier	Index (dec)	Index (hex)	Size (byte)	Data Type	Access	Default Value	Value Range	Data Storage
Previous Diagnostics 4	6220	0x184C	2	UInteger16	r/-	-	_	-
Timestamp 4	6207	0x183F	4	UInteger32	r/-	-	_	-
Previous Diagnostics 5	6222	0x184E	2	UInteger16	r/-	-	_	_
Timestamp 5	6208	0x1840	4	UInteger32	r/-	_	_	-
Current Output Simulation	8210	0x2012	2	UInteger16	r/w	33004 = Off	33004 = Off 33005 = On	_
Current Output Simulation Value	8211	0x2013	4	Float	r/w	3.58 mA	3.58 to 23 mA	_
Sensor Simulation	3109	0x0C25	1	UInteger8	r/w	0 = Off	0 = Off 1 = On	-
Sensor Simulation Value	3104	0x0C20	4	Float	r/w	0 °C (32 °F)	-1E+20 to 1E+20 °C	_
Switch Output Simulation	2056	0x0808	2	UInteger16	r/w	0 = Disabled	0 = Disabled 33004 = Off 33006 = On	_
Sensor Min Value	3081	0x0C09	4	Float	r/-	-	_	-
Sensor Max Value	3080	0x0C08	4	Float	r/-	-	_	-
Device Temperature	4096	0x1000	4	Float	r/-	-	_	-
Device Temperature Min	4107	0x100B	4	Float	r/-	_	_	_
Device Temp Max	4106	0x100A	4	Float	r/-	_	_	_
MDC Descriptor	16512	0x4080	11	Record	r/-	_	_	_

5.3.2 IO-Link Specific Device Data

Identifier	Index (dec)	Index (hex)	Size (byte)	Data Type	Access	Default Value
Serial Number	21	0x0015	16	String	r/-	-
Product ID	19	0x0013	32	String	r/-	PRTXI-PRTXS
Product Name	18	0x0012	32	String	r/-	PRTX RTD Temperature Sensor
Product Text	20	0x0014	32	String	r/-	PRTXI-PRTXS
Vendor Name	16	0x0010	32	String	r/-	Omega Engineering
Vendor Text	17	0x0011	32	String	r/-	Sensing Incredible Things
Hardware Version	22	0x0016	8	String	r/-	-
Firmware version	23	0x0017	8	String	r/-	-
Device Access Locks	12	0x000C	2	Record	r/w	_

5.3.2.1 IO-Link Configuration

IO-Link functions and device-specific parameters are configured through the device's IO-Link communication. IO-Link devices are typically configured using the automation system. The PRTX supports IO-Link Data Storage.

5.3.3 System Commands

Identifier	Value (dec)	Value (hex)
Reset factory settings	130	0x82
Activate parametrization lock	160	0xA0
Deactivate parametrization lock	161	0xA1
Reset sensor min/max values	162	0xA2
Reset device temperature min/max values	163	0xA3
IO-Link 1.1 system test command 240	240	0xF0
IO-Link 1.1 system test command 241	241	0xF1
IO-Link 1.1 system test command 242	242	0xF2
IO-Link 1.1 system test command 243	243	0xF3

6 Diagnostics and Troubleshooting

Follow these instructions to resolve general troubleshooting issues.

Error	Possible Cause	Solution	
Device is not responding.	Supply voltage does not match the value indicated in the specifications.	Apply correct voltage.	
	The polarity of the supply voltage is wrong.	Correct the polarity of the supply voltage.	
	The device has been incorrectly configured.	Check and correct the parameter configuration.	
Device measures incorrectly.	The device has been incorrectly connected.	Check the pin assignment.	
	Incorrect device orientation.	Install the device correctly.	
	Heat dissipation over the measuring point.	Observe the installed length of the sensor.	
No communication	Communication cable is not connected.	Check wiring and cables	
No communication	Communication cable is incorrectly attached to the IO-Link master.	Check wiring and cables.	
No transmission of process data There is an error in the device.		Correct errors that are displayed as a diagnostic event.	

6.1 Diagnostic Information via Communication Interface

The **Device Status** parameter shows the event category of the active diagnostic message with the highest priority.

The status signals provide information on the state of the device by categorizing the cause of the diagnostic information. The status signals are categorized according to NAMUR Recommendation NE 107:

F = Failure,

C = Function Check

S = Out of Specification

M = Maintenance Required

Alphabetic Character	Event Category	Meaning
F	Operating error	An operating error has occurred.
С	Service mode	The device is in service mode (e.g. during a simulation).
S	specification	The device is being operated outside its technical specifications (e.g. during warm-up or cleaning processes).
М	Maintenance required	Maintenance is required.

6.2 Diagnostic Overview

Diagnostic Message	Diagnostic Behavior	IO-Link Event Qualifier	IO-Link Event Code	Event Text	Reason	Corrective Measure
F001	Alarm	IO-Link Error	0x1817	Device failure	Device fault	1: Restart the device. 2: Replace device.
F004	Alarm	IO-Link Error	0x1818	Sensor defective	The sensor is defective (e.g.: sensor failure or sensor short-circuit)	Replace device.
S047	Warning	IO-Link Warning	0x1819	Sensor limit reached	Sensor limit has been reached	1: Check sensor. 2: Check process conditions.
C401	Warning	IO-Link Notification	0x181F	Factory reset active	Factory reset is active	Factory reset is active, please wait.
C402	-	-	-	Initialization active	Initialization is active	Initialization active, please wait.
C485	Warning	IO-Link Warning	0x181A	Process variable simulation active	Simulation of the process variable is active	Deactivate simulation.
C491	Warning	IO-Link Warning	0x181B	Current output simulation active	Simulation of the current output is active	Deactivate simulation.
C494	Warning	/IO-Link Warning	0x181C	Switch output simulation active	Simulation of the switch output is active	Deactivate simulation.
F537	Alarm	IO-Link Error	0x181D	Configuration invalid	Current range is invalid The difference between the 4mA value and 20mA value must be greater than or equal to 10°C. Switch points are	1: Check device
					invalid. The switch point must be greater than or equal to the switchback point.	configuration.
S801	Warning	IO-Link Warning	0x181E	Supply voltage too low	Supply voltage too low	Increase supply voltage.
S804 ¹⁾	Alarm	-	-	Overload at switch output	Overload at the switch output	 1: Increase load resistance at switch output. 2: Check the output. 3: Replace device.
\$825	Warning	IO-Link Warning	0x1812	Operating temperature	Operating temperature of the electronics out of specification	1: Check ambient

Diagnostic Message	Diagnostic Behavior	IO-Link Event Qualifier	IO-Link Event Code	Event Text	Reason	Corrective Measure
S844 ²⁾	Warning	-	-		Process value is outside the specification	 Check process value. Check application. Check sensor.

1) Diagnostic only possible in SIO mode

2) Diagnostic only possible in the 4 to 20 mA mode

6.2.1 Device Behavior During an Event Fault

The diagnostic behavior of the device differs depending on the selected operating mode. Regardless of the operating mode, all the diagnostic messages are saved in the event logbook, where they can be accessed as required.

6.2.1.1 IO-Link

The device displays warnings and faults via IO-Link. All the device warnings and faults are for information purposes only and do not have a safety function. The errors diagnosed by the device are displayed via IO-Link in accordance with NE107. A distinction must be made between the following types of diagnostic behavior:

Warning

The device continues measuring in the event of warning-type diagnostic behavior. The output signal is not affected (exception: simulation of the process variable is active).

Alarm

- The device does not continue measuring if this type of error occurs. The output signal adopts its fault state value in the event of an error.
- The PDValid Flag indicates that the process data are invalid.
- The fault state is displayed via IO-Link.

6.2.1.2 Switch output

Warning

The switch output remains in the state defined by the switch points.

Alarm

The switch output changes to the open state.

6.2.1.3 4 to 20 mA

Warning

The current output is not affected.

Alarm

The current output adopts the configured failure current.

Note: The behavior of the output in the event of a failure is regulated in accordance with NAMUR NE43.

- The failure current can be set.
- The selected failure current is used for all errors.

6.3 Diagnostic List

If three or more diagnostic events are pending simultaneously, only the 3 diagnostic messages with the highest priority are shown in the diagnostic list. The status signal dictates the priority in which the diagnostic messages are displayed. The following order of priority applies: F, C, S, M. If two or more diagnostic events with the same status signal are active simultaneously, the numerical order of the event number dictates the order of priority in which the events are displayed, e.g. F042 appears before F044 and before S044.

6.4 Event Logbook

The diagnostic messages are shown in chronological order in the event logbook. Additionally, a timestamp is saved with every diagnostic message. This timestamp is determined by the operating time counter.

7 Maintenance and Cleaning

The device must be cleaned whenever necessary. Cleaning can also be done when the device is installed. When cleaning the device, care must be taken to ensure that it is not damaged.

Important: Avoid damage to the device and the system. Pay attention to the specific IP code when cleaning.

7.1 Services

Service	Description
Calibration	RTD elements may drift depending on the application. Regular recalibration to verify accuracy is recommended. The calibration can be performed by Omega Engineering.

Calibration: Factory calibration is available upon request. Customers may request Cal-3 for standard 3-point calibration, or Cal-4 for user-specified temperature points. All calibrations are NIST traceable.

Droho Turo	Ducke Longth Minimum	Standard Calibration Points for CAL-3 Probe Diameter		
Probe Type	Probe Length Minimum	0.125 in (3.18 mm)	0.188 in (4.76 mm)	0.250 in (6.35 mm)
RTD	< 178 mm (7")	0°C (32°F) 50°C (122°F) 100°C (212°F		
	≥ 178 mm (7″)	100°C (212°F) 150°C (302°F) 200°C (392°F)		

8 Certifications and Approvals

CE Mark: The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EC directives. The manufacturer confirms successful testing of the product by

affixing the CE-mark.

UKCA Mark: The product meets the requirements of UK designated standards. As such, is complies with the specifications of relevant UK legislations. The manufacturer confirms successful testing of the product by

affixing the UKCA mark.

RoHS: The measuring system complies with EU Directive 2011/65/EU (RoHS 2) and 2015/863 of the European Parliament on the restriction of use of certain hazardous substances in electrical and electronic equipment.

MTBF: For the transmitter: 327 years, according to Siemens Standard SN29500

Hygienic Standard (Applies to Sanitary Models Only):

- 3-A Authorization No. 1519, 3-A Sanitary Standard 74-07. Sensors and Sensor Fittings and Connections.
- EHEDG Certified, Certificated No. EHEDG-C2200048

Other Standards and Guidelines:

- Degree of protection provided by enclosures (IP code) according to IEC 60529
- Safety requirements for electrical equipment for measurement, control and laboratory use according to IEC 61010-1
- Industrial platinum resistance RTD temperature sensor in accordance with IEC 60751
- Electromagnetic compatibility (EMC requirements) IEC/EN 61326 series
- NAMUR International user association of automation technology in process industries (www.namur.de)
- NE21 Electromagnetic Compatibility (EMC) of Industrial Process and Laboratory Control Equipment.
- NE43 Standardization of the Signal Level for the Failure Information of Digital Transmitters.
- Electromagnetic compatibility (EMC) according to IO-Link Specification IEC 61131-09

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **13 months** from date of purchase. OMEGA's WARRANTY adds an additional one (1) month grace period to the normal **one (1) year product warranty** to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR **WARRANTY** RETURNS, please have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number under which the product was PURCHASED,
- 2. Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to the product.

FOR **NON-WARRANTY** REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- 3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a trademark of OMEGA ENGINEERING, INC.

© Copyright 2019 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course! Shop online at omega.com

TEMPERATURE

- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

- Transducers & Strain Gages
- Load Cells & Pressure Gages
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL

- Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY

- PH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION

- Communications-Based Acquisition Systems
- Data Logging Systems
- Wireless Sensors, Transmitters, & Receivers
- Signal Conditioners
- Data Acquisition Software

HEATERS

- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- PH, Conductivity & Dissolved Oxygen Instruments